16117

3 Hours / 100 Marks

Seat No.

Instructions:

- (1) All Questions are *compulsory*.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any TEN of the following:

20

- (a) Find x if $\begin{vmatrix} 4 & 3 & 9 \\ 3 & 2 & 7 \\ 1 & 4 & x \end{vmatrix} = 0$.
- (b) If $A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, find 2A + 3B 5I, where I is unit matrix of order two.
- (c) If $A = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$, show that A^2 is null matrix.
- (d) Resolve into partial fraction: $\frac{1}{x(x+1)}$.
- (e) Prove that $\cos 2\theta = 2\cos^2\theta 1$.
- (f) Find sin α if $\tan\left(\frac{\alpha}{2}\right) = \frac{1}{\sqrt{3}}$.
- (g) Without using calculator find the value of sin (-765°).
- (h) Find the principal value of $\sec \left[\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$.

[1 of 4] P.T.O.

17104

[2 of 4]

- (i) Define compound angle.
- (j) Prove that the lines 3x + 2y = 5 and 2x 3y = 6 are perpendicular.
- (k) Find range and coefficient of range of following data: 50, 90, 120, 40, 180, 200, 80.
- (I) Find AB if $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix}$

2. Attempt any FOUR of the following:

16

(a) Solve the following equations using Cramer's Rule:

$$2x + 3y = 5$$
; $y - 3z = -2$; $z + 3x = 4$

- (b) If $A + I = \begin{bmatrix} 1 & 3 & 4 \\ -1 & 1 & 3 \\ -2 & -3 & 1 \end{bmatrix}$, obtain the matrix (A + I)(A I).
- (c) Show that matrix $A = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$ is an orthogonal matrix.
- (d) Find the inverse of the Matrix;

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
 by adjoint method.

- (e) Resolve into partial fraction: $\frac{x^3 + x}{x^2 4}$.
- (f) Resolve into partial fraction : $\frac{3x-1}{(x-4)(2x+1)(x-1)}$.

3. Attempt any FOUR of the following:

16

- (a) Using Matrix inversion method solve the system of equations : x + y + z = 3, 3x 2y + 3z = 4, 5x + 5y + z = 11.
- (b) Resolve into partial fractions : $\frac{\tan \theta}{(\tan \theta + 2)(\tan \theta + 3)}$.
- (c) Resolve into partial fraction:

$$\frac{x^2 + 23x}{(x+3)(x^2+1)}.$$

(a)

- (d) Prove that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$.
- (e) If $\tan A = \frac{1}{3}$, $\tan B = \frac{1}{4}$, where $0 < A < \pi/2$, $\pi < B < 3\pi/2$, find $\sin(A + B)$.
- (f) Without using calculator, find the value of : $\tan (585^\circ) \cdot \cot (-495^\circ) \cot (405^\circ) \cdot \tan (-495^\circ)$

 $\sin (A - B) = \sin A \cos B - \cos A \sin B$.

4. Attempt any FOUR of the following:

- Prove that :
- (b) Prove that : $\cos 2A = 2 \cos^2 A 1$.
- (c) If $\tan (x + y) = \frac{1}{2}$ and $\tan (x y) = \frac{1}{3}$, find (i) $\tan 2x$, (ii) $\tan 2y$.
- (d) Prove that $\frac{\sin A + \sin 2A + \sin 3A + \sin 4A}{\cos A + \cos 2A + \cos 3A + \cos 4A} = \tan \left(\frac{5A}{2}\right).$
- (e) Prove that : $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$.
- (f) Prove that : $\tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{8}\right) = \frac{\pi}{4}$.

5. Attempt any FOUR of the following:

- (a) Prove $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$ if 1 xy > 0.
- (b) Prove that $\sin 10^{\circ} \cdot \sin 30^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ} = \frac{1}{16}$
- (c) Prove that $\sin C \sin D = 2 \cos \left(\frac{C + D}{2}\right) \sin \left(\frac{C D}{2}\right)$.
- (d) Show that the distance between two parallel lines $ax + by + C_1 = 0$ &

$$ax + by + C_2 = 0$$
 is given by $d = \left| \frac{C_2 - C_1}{\sqrt{a^2 + b^2}} \right|$.

- (e) Find the length of perpendicular on the line 3x + 4y 5 = 0 from (3, 4).
- (f) Find the equation of the line passing through the point of intersection of lines 2x + 3y = 13, 5x y 7 = 0 and perpendicular to the line 3x 2y + 7 = 0.

P.T.O.

16

16

17104 [4 of 4]

6. Attempt any FOUR of the following:

16

- (a) Find the equation of line passing through the point of intersection of lines x + y = 0 and 2x y = 9 and a point (2, 5).
- (b) Find the mean deviation from median of the following distribution :

Weight (in gms)	10-15	15-20	20-25	25-30	30-35	35-40	40-45
No. of items	7	12	16	25	19	15	6

(c) Calculate : (i) Standard deviation, (ii) Co-efficient of variation from the following data :

Rainfall	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150
No. of places	06	07	12	19	21	18	11	06

(d) The weights of 100 students are given by the following distribution :

Weight above or equal to	36	41	46	51	56	61	66	71
No. of Students	100	96	79	56	28	11	5	2

Calculate: (i) Mean, (ii) Variance of the data using step deviation method. No student has weight above 75 kg.

(e) In the two factories A & B engaged in the same industry, the average weekly wages & standard deviation are as follows:

Factories	Average wages	Standard deviation			
A	34. 5	5.0			
В	28.5	4.5			

Which factory is more consistent?
